In vivo contribution of serine proteases to the proteolytic activation of γENaC in aldosterone-infused rats.
نویسندگان
چکیده
Aldosterone plays an important role in the regulation of blood pressure by modulating the activity of the epithelial sodium channel (ENaC) that consists of α-, β-, and γ-subunits. Aldosterone induces a molecular weight shift of γENaC from 85 to 70 kDa that is necessary for the channel activation. In vitro experiments demonstrated that a dual cleavage mechanism is responsible for this shift. It has been postulated that furin executes the primary cleavage in the Golgi and that the second cleavage is provided by other serine proteases such as prostasin or plasmin at the plasma membrane. However, the in vivo contribution of serine proteases to this cleavage remains unclear. To address this issue, we administered the synthetic serine protease inhibitor camostat mesilate (CM) to aldosterone-infused rats. CM decreased the abundance of the 70-kDa form of ENaC and led to a new 75-kDa form with a concomitant increase in the urinary Na-to-K ratio. Because CM inhibits the protease activity of serine proteases such as prostasin and plasmin, but not furin, our findings strongly indicate that CM inhibited the second cleavage of γENaC and subsequently suppressed ENaC activity. The results of our current studies also suggest the possibility that the synthetic serine protease inhibitor CM might represent a new strategy for the treatment of salt-sensitive hypertension in humans.
منابع مشابه
Demonstration of Proteolytic Activation of the Epithelial Sodium Channel (ENaC) by Combining Current Measurements with Detection of Cleavage Fragments
The described methods can be used to investigate the effect of proteases on ion channels, receptors, and other plasma membrane proteins heterologously expressed in Xenopus laevis oocytes. In combination with site-directed mutagenesis, this approach provides a powerful tool to identify functionally relevant cleavage sites. Proteolytic activation is a characteristic feature of the amiloride-sensi...
متن کاملDiabetic nephropathy is associated with increased urine excretion of proteases plasmin, prostasin and urokinase and activation of amiloride-sensitive current in collecting duct cells.
BACKGROUND Diabetic nephropathy (DN) is associated with hypertension, expanded extracellular volume and impaired renal Na(+) excretion. It was hypothesized that aberrant glomerular filtration of serine proteases in DN causes proteolytic activation of the epithelial sodium channel (ENaC) in the kidney by excision of an inhibitory peptide tract from the γ subunit. METHODS In a cross-sectional d...
متن کاملContribution of Streptokinase-Domains from Groups G and A (SK2a) Streptococci in Amidolytic/Proteolytic Activities and Fibrin-Dependent Plasminogen Activation: A Domain-Exchange Study
Background: Streptokinase (SK), a heterogeneous plasminogen (PG) activator (PA) protein from groups A, C, and G streptococci (GAS, GCS, GGS, respectively) contains three structural domains (SKα, SKβ, and SKg). Based on the variable region of SKβ, GAS-SKs (ska) are clustered as SK1 and SK2 (including SK2a/SK2b), which show low and high fibrinogen (FG)-dependent PG activation properties, respecti...
متن کاملPlasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the γ subunit of the human epithelial sodium channel
Proteolytic activation of the epithelial sodium channel (ENaC) involves cleavage of its γ subunit in a critical region targeted by several proteases. Our aim was to identify cleavage sites in this region that are functionally important for activation of human ENaC by plasmin and chymotrypsin. Sequence alignment revealed a putative plasmin cleavage site in human γENaC (K189) that corresponds to ...
متن کاملThe human neutrophil serine proteinases, elastase and cathepsin G, can mediate glomerular injury in vivo
We infused microgram quantities of active or inactive PMN elastase and cathepsin G into the renal arteries of rats. Both active and inactive elastase localized to the glomerular capillary wall equally, and in amounts that could be achieved physiologically in GN. However, elastase-perfused rats developed marked proteinuria (196 +/- 32 mg/24 h) compared with control rats receiving inactive elasta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 7 شماره
صفحات -
تاریخ انتشار 2012